
2.5 year of Druid-ing

Druid meetup, 7th
2018.06.11, Navis (SK Telecom)

• Navis : 2.5 Druid / 17 Java

Who am I

Agenda

• Brief introduction to Druid

• Follow-up works in SKT (of previous meet-ups)

Introduction to Druid

History
• Initial Use case 

Power ad-tech analytics product (Metamarkets, 2011)

• Apache License v2 (2015. 2)  
Initially open sourced in late 2012 as LGPL v2 
Imply launched (2015.10) 
Apache incubator (2018. 3)

• Requirements 
Query any combination of metrics and dimensions 
Scalability : trillions of events/day 
Real-time : data freshness 
Streaming Ingestion 
Interactive : low latency queries

* Nishant Bangarwa: An Introduction to Druid (DataWorks Summit, 2018.5)

Motivation

• Business Intelligence Queries  
Arbitrary slicing and dicing of data 
Interactive real time visualizations on Complex data streams

• Answer BI questions 
How many unique male visitors visited my website last month ? 
How many products were sold last quarter broken down by a demographic and product category ?

• Not interested in dumping entire dataset 
Optimized to make highly selective/aggregated data

* Nishant Bangarwa: An Introduction to Druid (DataWorks Summit, 2018.5)

Motivation
timeseries (interval, granularity) filtering

quick data-view

metric (to see)

interactive visualization

What is Druid ?
• Column-oriented distributed datastore

• Sub-Second query times

• Realtime streaming ingestion

• Arbitrary slicing and dicing of data

• Automatic Data Summarization

• Approximate algorithms (hyperLogLog, sketch)

• Scalable to petabytes of data

• Highly available

• Mo, Better concurrency

* Nishant Bangarwa: An Introduction to Druid (DataWorks Summit, 2018.5)

* Nishant Bangarwa: Druid, sub second OLAP queries over petabytes of data

* Itai Yaffe, Our journey with druid - from initial research to full production scale

BI Acceleration Techniques

* Gustavo Arocena : The Convergence of Reporting and Interactive BI on Hadoop (DataWorks Summit, London, 2018.5)

Columnar Storage
• Uses Columnar Format
• Processing is not vectorized

Caching

• Cache per segment (broker or historical)
• Local / Remote (supports various caches)
• Cache per query (in progress)
• Not intelligent (key-value pairs, inefficient)

Indexing
• Dictionary + inverted index, R-index
• Dictionary is not shared & not compressed
• No index for metric (needs full scan)

Cubing
• Via pre-aggregation
• Loosing some data
• No runtime cube generation

Case of Druid

Functional Extension
• Plugin Based Architecture  

Leverage Guice in order to load extensions at runtime 
There are many engines faster than Druid, but it’s hard to see extensible one

• Possible to add extension to 
Add a new deep storage implementation 
Add a new Firehose for Ingestion 
Add Aggregators 
Add Complex metrics 
Add new Query types  
Add new Jersey resources

• Bundle your extension with all the other Druid extensions

meetup 2nd, (2016.09.06)

meetup 3rd, (2016.12.26)

druid-stats, druid-orc

* Nishant Bangarwa: An Introduction to Druid (DataWorks Summit, 2018.5)

UI tools (OSS)
• Superset 

Developed at AirBnb  
In Apache Incubation since May 2017

• Grafana – Druid plugin

• Metabase

• With in-built SQL, connect with any BI tool supporting JDBC

• Pivot

• Ambari (HDP) integrated

* Nishant Bangarwa: An Introduction to Druid (DataWorks Summit, 2018.5)

Suitable Use Cases
• Powering Interactive user facing applications

• Arbitrary slicing and dicing of large datasets

• User behavior analysis

• measuring distinct counts

• retention analysis (cohort analysis)

• funnel analysis

• A/B testing

• Exploratory analytics/root cause analysis

• Not interested in dumping entire dataset

* Nishant Bangarwa: An Introduction to Druid (DataWorks Summit, 2018.5)

Summary
• It’s good

• It’s promising

Follow-up works in SKT

Hive on Druid
• DruidStorageHandler  
 
 
 

• Some improvements : BSON, StreamRawQuery, etc.

• Not using though : HortonWorks is elaborating it

Result Forwarding
• CSV, TSV

• Json, Excel, ORC, etc.

• Druid index

• register as permanent or temporary data-source

• Parallel forwarding
• select / stream query

Aggregation Functions
• variance, stddev

• range

• covariance, pearson, kurtosis

• timeMin, timeMax

• sketch (theta, quantile, sample, frequency)

• SketchQuery

• Extended query function

• GroupByQuery

• GroupingSet (group#, cube, rollup)

• Windowing (window functions, pivot, flatten, etc.)

• LateralView

• OutputColumns

Queries

Queries
• More query types

• UnionAllQuery

• Join, Summary, Covariance

• IteratingQuery

• FindNearest (k-means)

• ManagementQuery

• JMX, Config

Queries
• Query rewriting (Broker)

• GroupByQuery : Timeseries (+ limit ordering pushdown)

• CovarianceQuery : SelectMeta + Timeseries + CovariancePostProcessor

• JoinQuery : UnionAll + JoinPostProcessor

• KMeansQuery : SegmentMetadata (generate centroid) +  
 FindNearest (IteratingQuery)

• SummaryQuery : SelectMeta +  
 UnionAll (Sketch.theta, Sketch.quantile) +  
 Timeseries (metric) or Search (dimension) +  
 SegmentMetadata (timestamp)  

Queries
• Local optimization (historical)

• Query splitting

• Applicable to steaming queries : GroupByQuery, StreamRawQuery

• Make histogram on a column, split and process one by one

• Reduced (first) response time from historical nodes

• Avoids OOM in historical nodes

• Segment filtering

• Remove unnecessary scan

• SelectQuery

Druid Index
• Ranged Histogram

• Lucene (text)
• QueryFilter 
 

• Bit sliced bitmap

• Lucene (spatial)
• types : latlon, spatial (recursive prefix tree)

• filters : Point, Spatial, GeoJsonPolygon, Nearest

Index (BSB)

• Why BSB?

• Ranged histogram is hard to make (well) in single-phase

• Easy to implement, low cost for building

• Exact (Not like ranged histogram)

• Only applicable for fixed-length types

• cannot apply to string or BigDecimal

• all primitive types (with some bit permutation)

• What is BSB?

• Example : {100, 135, 150, 200}, find x > 134

100 = 01100100  
135 = 10000111  
150 = 10010110  
200 = 11000100  
 
134 : 10000110

b8 : 0111 <— 1 (1 < 0 : fail = x)  
b7 : x001 <— 0 (0 > 1 : ok = y)  
b6 : x00y <— 0 …  
b5 : x01y <— 0 …  
b4 : x0yy <— 0 …  
b3 : x1yy <— 1 …  
b2 : x1yy <— 1 …  
b1 : x1yy <— 0 …  
 xyyy result : 135, 150, 200  

Index (BSB)

• New requirements : GPS coordinates
• T-map, Tango, etc.

• Druid supports r-index
• Only supports euclidian coordinates

• Inefficient in footprint (stored twice, in dimension & r-index)

• Improve r-index ?
• Knows nothing on GIS : Am I doing it right?

• Heard that ES supports it well

• Then, let’s store the coordinates as a column, index it with lucene

Index (Lucene spatial)

• Store coordinates to

• dimension : string or string[] with index

• metric : float, long (+ double, string, decimal), array

• internal types : map, list, dateTime

• Use dimension? string? or array.double?

• Inefficient or not intuitive

• Cannot include other fields (to be indexed by lucene altogether)

• Introduced “struct” type

• example : struct (latitude:double, longitude:double, address:string)

Index (Lucene spatial)

• Index with Lucene

• Extend indexSpec to accept lucene strategies

• type : text + latlon, spatial

Index (Lucene spatial)

• Point filter
• type : distance, box, polygon  

• Point nearest

Index (Lucene spatial)

• Spatial filter

• operation : covered, coveredBy, intersects

• shapeFormat : WKT, GeoJson

Index (Lucene spatial)

Summary
• We are taking Druid seriously

• Built Metatron on it

• http://metatron.app

• SKT, Hynix, IBK, Bharti Airtel, etc.

• And will continue investigating on it

• So,

http://metatron.app

Questions?

